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Abstract. A new multi-fermion realization of SUq (2) is built, whose generators have been
written as functions of operators of su(2) algebra. With the help of the realization, the influence
of theq-deformation of su(2) algebra on the excitation spectrum and the ground state properties
of the Lipkin–Meshkov–Glick model can easily be understood. It is also shown that the variation
approach on the basis of the usual su(2) coherent state still works well for theq-deformed model.

Quantum group [1, 2], deformed Lie algebra, has attracted much attention of both physicists
and mathematicians in recent years. It has been developed in many respects. In order
to clarify its interpretations and possible applications in physics, the study ofq-deformed
physical systems is significant [3–9] and some solvable models which have the common
feature that their Hamiltonians can be written as functions of generators of quantum algebras
have been investigated [10–15]. It is very useful when studying these physical systems to
express generators of a quantum algebra in terms of operators of the corresponding Lie
algebra. In our opinion, this has at least two advantages. One is that we can use the well
developed calculation skills of Lie algebras and various approximation approaches for the
usual quantum systems. Another is that we can see what is added to an original quantum
system throughq-deformation and then understand whyq-deformation brings about such
physical effects. In this paper, we shall employ the Lipkin–Meshkov–Glick (LMG) model
[16, 17] to investigate the above idea.

The model under consideration has two energy levels separated byε. The degeneracy
of each level isN . Two quantum numbersp andσ serve to label single particle states, in
which p takes integral values from 1 toN , andσ = +1, −1 are for the upper and lower
levels, respectively. The Hamiltonian of the model is

Ĥ = εL̂z − V

2
(L̂2

+ + L̂2
−) (1)

with

L̂z = 1
2

∑
σ=±

N∑
p=1

σa+
pσ apσ L̂+ =

N∑
p=1

a+
p+ap− L̂− = (L̂+)+ (2)
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wherea+
pσ (apσ ) creates (annihilates) a particle in the single particle state(p, σ ) andV is

a constant standing for the strength of the interaction. Sincea+
pσ and apσ fulfil the anti-

commutation relations of fermions, it is easily shown that the commutation relations ofL̂z
and L̂± are

[L̂z, L̂±] = ±L̂± [L̂+, L̂−] = 2L̂z. (3)

Therefore,L̂z and L̂± constitute a su(2) algebra.
Let Ĵz and Ĵ± represent the generators of quantum algebra SUq(2). It is well known

that their commutators are

[Ĵz, Ĵ±] = ±Ĵ± [Ĵ+, Ĵ−] = [2Ĵz] (4)

where

[2Ĵz] = q2Ĵz − q−2Ĵz

q − q−1
. (5)

By settingq = exp(η), we can write (5) as

[2Ĵz] = sinh(2ηĴz)

sinh(η)
. (6)

ReplacingL̂z and L̂± in (1) by Ĵz and Ĵ±, one can obtain theq-deformed LMG model,
whose Hamiltonian is

Ĥ = εĴz − V

2
(Ĵ 2

+ + Ĵ 2
−). (7)

This model was employed in [11] to test the validity of the variation approach on the
basis of the SUq(2) coherent state and to study the influence ofq-deformation of the su(2)
algebra on the ground state phase transition. Since all their calculations were directly carried
out in theq-deformed representation regardless of concrete realizations ofĴz and Ĵ±, it is
impossible through that study to understand whyq-deformation causes the observed physical
phenomena. A multi-fermion realization of the quantum algebra SUq(2) was built in [12].
The generatorĴ+ ( Ĵ−) in that realization was written as the linear superposition of the
original fermion operatorsa+

p+ap−(a+
p−ap+). In this way, particles with different quantum

numbersp are treated in different ways and the symmetry among particles which exists in
the original model is destroyed in those generators. In the present study, we shall express
Ĵz and Ĵ± as functions ofL̂z and L̂± to overcome the above shortcomings.

We notice that the eigenvalues ofL̂z are differences between the particle numbers of
the upper and lower levels. It is reasonable in physics to take

Ĵz = L̂z. (8)

Furthermore, considering the first relations of (3) and (4), we set

Ĵ+ = L̂+φ(L̂, L̂z) Ĵ− = L̂−ψ(L̂, L̂z) (9)

whereφ andψ are functions ofL̂z andL̂ defined according tôL · L̂ = L̂2, which stands for
the Casimir operator of the Lie algebra su(2). Using commutation relations (3), one easily
verifies that the generators constructed as (8) and (9) obey the first commutation relation of
(4) identically. The second commutation relation of (4) requires that the operator functions
φ andψ satisfy

[2L̂z] = (L̂2 − L̂2
z + L̂z)φ(L̂, L̂z − 1)ψ(L̂, L̂z)− (L̂2 − L̂2

z − L̂z)ψ(L̂, L̂z + 1)φ(L̂, L̂z).

(10)
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SinceĴ± must be Hermitian conjugate to one another, i.e.(Ĵ+)+ = Ĵ− and(Ĵ−)+ = Ĵ+, it
follows that

φ(L̂, L̂z) = ψ(L̂, L̂z + 1). (11)

ConsideringĴ±|η→0 = L̂± and using (10) and (11), we find

Ĵz = L̂z (12)

Ĵ+ = L̂+
[sinh2(ηL̂)− sinh(ηL̂z) sinh(η(L̂z + 1))]1/2

[L̂2 − L̂2
z − L̂z]1/2 sinh(η)

(13)

Ĵ− = L̂−
[sinh2(ηL̂)− sinh(ηL̂z) sinh(η(L̂z − 1))]1/2

[L̂2 − L̂2
z + L̂z]

1
2 sinh(η)

. (14)

Substituting the expressions (2) into (12)–(14), we finally obtain a new multi-fermion
realization of SUq(2). In contrast to the realization given in [12], there are two useful
features in (12)–(14). One is that̂J± have been expressed as functions ofL̂z and L̂±.
Another is that the symmetry among particles inL̂z and L̂± is preserved inĴz and Ĵ±.

With the help of (12)–(14), we can write the Hamiltonian (7) as

Ĥ (η) = εĴz − V

2
[G(L̂, L̂z)L̂

2
+ + L̂2

−G(L̂, L̂z)]. (15)

where

G(L̂, L̂z) = φ(L̂, L̂z − 1) · φ(L̂, L̂z − 2) (16)

with

φ(L̂, L̂z) = [sinh2(ηL̂)− sinh(ηL̂z) sinh(η(L̂z + 1))]1/2

[L̂2 − L̂2
z − L̂z]1/2 sinh(η)

. (17)

SinceĤ (η) is now expressed as a function ofL̂z andL̂±, like the original Hamiltonian (1),
it can also be diagonalized in a subspace spanned by basic vectors

|n〉 =
√
(N − n)!

n!N !
(L̂+)n

N∏
p=1

a+
p−|0〉 n = 0, 1, 2, . . . , N (18)

which are the common eigenstates ofL̂2 and L̂z, i.e.

L̂2|n〉 = N

2

(
N

2
+ 1

)
|n〉 L̂z|n〉 =

(
−N

2
+ n

)
|n〉. (19)

In contrast to [11], here we do not have to perform our calculations in theq-deformed
representation. On the other hand, comparing (15) with (1), one notices thatq-deformation
induces only the operator functionG(L̂, L̂z). Therefore, all the physical effects created by
q-deformation come from the modification ofG(L̂, L̂z) to the interaction strength. The
matrix element ofĤ (η) between the states|n′〉 and |n〉 (n > n′) can be written as

〈n|Ĥ (η)|n′〉 = −V
2

〈n|G(L̂, L̂z)|n〉〈n|L̂2
+|n′〉. (20)

We see that the interaction strength is modified by the factor〈n|G(L̂, L̂z)|n〉. The interaction
will be enhanced if〈n|G(L̂, L̂z)|n〉 > 1 for all states, and suppressed otherwise. We shall
numerically show the behaviour of the factor〈n|G(L̂, L̂z)|n〉 in the following.

The Hartree–Fock (HF) approximation is extensively used in dealing with quantum
many-body problems. The basic idea of the HF approximation is to choose a proper
determinant composed of single particle states as the approximate ground state vector of
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a quantum many-body system. In (15), the interaction term represents the state-dependent
monopole particle–hole excitation between the upper and lower levels. The operatorL̂+ can
create this excitation from the unperturbed ground state

∏N
p=1 a

+
p−|0〉. Therefore, instead of

employing theq-coherent state as in [11], we here take the usual su(2) coherent state

|8(z)〉 = 〈8(z)|8(z)〉1/2 exp(zL̂+)
N∏
p=1

a+
p−|0〉 (21)

as the HF trial determinant, where the parameterz = ρ exp(iφ) is a complex number. The
expectation value ofĤ (η) in (21) can be found as

E(η, ρ, φ) = −1

2
εN + ρ2

1 + ρ2
εN

−V
N−2∑
k=0

N !

k!(N − k − 2)!
S(η, k)S(η, k + 1)

ρ2k+2

1 + ρ2
cos 2φ (22)

where

S(η, k) =
[
sinh2

(
η

√
N
2 (

N
2 + 1)

)
− sinh(η(N2 − k)) sinh(η(N2 − k − 1))

]1/2

[ N2 (
N
2 + 1)− (N2 − k)2 + (N2 − k)]1/2 sinh(η)

. (23)

The ground state energy under the HF approximation is the minimal value ofE(η, ρ, φ)

with respect toρ andφ. In (22), the variation region ofρ is from 0 to +∞ andφ from
0 to 2π . We see in (22) that the minimal point must be atφ = 0 andφ = π . Although
the values ofE(η, ρ, φ) at φ = 0 andπ are the same, the corresponding state vectors (21)
are different: exp(ρL̂+)

∏N
p=1 a

+
p−|0〉 for φ = 0 and exp(−ρL̂+)

∏N
p=1 a

+
p−|0〉 for φ = π .

To consider equally the states we extend the variation region ofρ to −∞ while applying
the restrictionφ = 0. If the parameterη = 0, using (22) it is easily shown that when
VN/ε < 1 the minimal point is atρ = 0, but whenVN/ε > 1 there are two minimal
points symmetrically aboutρ = 0 [16, 17]. The excitation spectrum and the ground state
properties of the system in the two interaction regions are very different. As usual, we
say that the system undergoes a ground state phase transition whenVN/ε changes from
values smaller than unity to larger than unity. Here, we are interested in the influence of
q-deformation on the phase transition.

In figure 1, the modifying factors〈n|G(L̂, L̂z)|n〉 of the interaction for the various states
are depicted. One notices that the values of all the factors are larger than unity. In fact,
we have found that their values are always larger than unity as long asη 6= 0, and increase
rapidly withη increasing. As mentioned in the above, the monopole particle–hole interaction
is strengthened byq-deformation. Therefore, we can conclude that the ground state phase
transition must be enhanced in theq-deformed LMG model. It should be pointed out that
the conclusion obtained in [11] is not in agreement with the present result. We notice that
the parameterχ = V [N ]/ε with [N ] = (qN − q−N)/(q − q−1) = sinh(ηN)/ sinh(η) was
used in [11]. Because [N ] increases monotonically withq or η increasing for a fixedN , it
is equivalent to decreasing the interaction strengthV if one fixesχ but increasesq or η.
Therefore, suppression of the ground state phase transition in theq-deformed LMG model,
which was declared in [11], is simply induced by decreasing the interaction strength.

In figure 2, the exact excitation energies of the first several eigenstates ofĤ (η) are
plotted against the parameterVN/ε. In figure 2(a), we observe that whenVN/ε < 1
the excitation spectrum is nearly a typical vibration spectrum with unity space, and when
VN/ε > 1 the lower lying states become double degenerate in energy. Comparing
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Figure 1. The matrix elements〈n|G(L̂, L̂z)|n〉 for N = 20.

20.0

15.0

10.0

5.0

0.0

VN/ε

(E
n–

E
g.

s.
)/

ε

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

20.0

15.0

10.0

5.0

0.0

VN/ε

(E
n–

E
g.

s.
)/

ε

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

(a) (b)

Figure 2. The excitation energies versusVN/ε for N = 20. (a) η = 0.0; (b) η = 0.2.

figures 2(a) and (b), we see that whenη 6= 0 the range of values ofVN/ε for the vibration
spectrum becomes much smaller and the double degeneracy appears even for very small
values ofVN/ε(< 1). This means that phase transition is enhanced by theq-deformation,
which is just as we expect. One of the characteristics of the ground state phase transition
is the emergence of the zero-frequency vibration mode. The first excitation energy versus
VN/ε is shown in figure 3. It is noticed that in the caseη = 0 the energy approaches
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zero asVN/ε increases, but whenη 6= 0 the energy initially sharply decreases and then
gradually increases.

1.0

0.5

0.0

VN/ε

(E
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E
g.

s.
)/

ε

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Figure 3. The first excitation energy versusVN/ε for N = 20 with η = 0.0 (full curve) and
with η = 0.35 (broken curve).
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Figure 4. The energy surfaceE(η, ρ, φ) as a function ofρ for N = 20. (a) VN/ε = 0.4 ,
η = 0 (full curve) andη = 0.3 (broken curve); (b) VN/ε = 6.0 , η = 0 (full curve) andη = 0.1
(broken curve).

The changes of excitation spectrum observed may be understood according to the
behaviour ofE(η, ρ, φ) with respect toρ. In figure 4, we show a cut(φ = 0) through
the two-dimensional energy surface (22) for different values ofVN/ε and η. Obviously,
if the minimum appears atρ = 0 the excitation spectrum must exhibit the behaviour of
an equal-spaced vibration spectrum. And if two minima appear symmetrically about the
original, states which have exciting energies lower than the barrier between the two minimal
points must be double degenerate in energy. Ifη = 0, the first and second cases happen
whenVN/ε < 1 andVN/ε > 1, respectively. Ifη 6= 0, we notice that even for very small
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VN/ε(< 1) the pointρ = 0 becomes unstable and two symmetrical minimal points appear
as shown in figure 4(a). In comparison with the case ofη = 0, as shown in figure 4(b),
the minimal points become lower and the barrier between the minimal points is narrower
whenη 6= 0. In our calculations we have found that these changes are more pronounced as
VN/ε becomes larger. Since the barrier becomes much narrower and the tunnel effect is
more pronounced asVN/ε increases, the first double degeneracy is dismissed and the first
excitation energy becomes non-zero as shown in figure 3.

Table 1. Comparison of the exact ground state energyEex.
g.s./ε with the HF approximation

EHF
g.s./ε.

N 10 20 40

η VN/ε Eex.
g.s. EHF

g.s. Eex.
g.s. EHF

g.s. Eex.
g.s. EHF

g.s.

0.0 −5.0000 −5.0000 −10.0000 −10.0000 −20.0000 −20.0000
0.4 −5.0366 −5.0000 −10.0391 −10.0000 −20.0404 −20.0000
0.6 −5.0839 −5.0000 −10.0912 −10.0000 −20.0954 −20.0000

0.0 0.8 −5.1533 −5.0000 −10.1717 −10.0000 −20.1838 −20.0000
1.0 −5.2480 −5.0000 −10.2915 −10.0000 −20.3288 −20.0000
2.0 −6.2235 −5.8887 −12.3242 −12.1314 −24.7902 −24.6280
5.0 −12.1030 −11.8055 −25.0558 −24.8024 −51.0452 −50.8010

0.0 −5.0000 −5.0000 −10.0000 −10.0000 −20.0000 −20.0000
0.4 −5.0488 −5.0000 −10.1254 −10.0000 −23.6737 −23.5316
0.6 −5.1123 −5.0000 −10.3085 −10.0000 −28.6627 −28.4887

0.1 0.8 −5.2058 −5.0000 −10.6269 −10.2580 −34.3369 −34.0929
1.0 −5.3338 −5.0032 −11.1486 −10.8602 −40.3749 −40.0456
2.0 −6.5989 −6.2778 −16.0944 −15.8706 −72.8356 −71.9681
5.0 −13.3263 −12.9796 −35.5783 −35.0639 −175.4672 −172.8557

0.0 −5.0000 −5.0000 −10.0000 −10.0000 −20.0000 −20.0000
0.4 −5.1075 −5.0000 −11.9587 −11.6940 −222.0260 −216.6620
0.6 −5.2487 −5.0000 −14.4736 −14.2396 −330.8338 −322.1046

0.2 0.8 −5.4573 −5.0729 −17.4264 −17.1420 −440.0223 −427.9205
1.0 −5.7393 −5.3330 −20.5955 −20.2315 −549.3819 −533.9264
2.0 −8.0660 −7.7362 −37.6774 −36.8084 −1097.0073 −1065.0435
5.0 −17.6452 −17.1052 −91.4588 −89.0265 −2741.2701 −2660.4930

The ground state energy under the HF approximationEHF
g.s./ε is compared with the exact

oneEex.
g.s./ε for different values of theq-deformation parameterη in table 1. We see that

the HF approximation on the basis of the usual su(2) coherent state is also very well to the
q-deformed system. In table 1, the results with a fixedN but differentη clearly show the
enhancement of the ground state phase transition in theq-deformed LMG model. We also
notice that the enhancement effect is more pronounced asN becomes large.

In summary, we find a new multi-fermion realization of quantum algebra SUq(2), whose
generators have been written as functions of the operators of su(2) algebra. We show that
the interaction is strengthened byq-deformation and that the ground state phase transition
is enhanced in theq-deformed LMG model. We also show that the HF approximation on
the basis of the usual su(2) coherent state still works well for theq-deformed system.



4648 Fu-li Li et al

References

[1] Drinfeld V G 1985Sov. Math. Dokl.32 254
[2] Jimbo M 1986Lett. Math. Phys.11 247; 1986Commun. Math. Phys.102 537
[3] Raychev P P, Roussev P R and Simirnov Y F 1990J. Phys. G: Nucl. Part. Phys.16 L137
[4] Bonatsos Det al 1990Phys. Lett.251B 447
[5] Chaichan M, Ellinas D and Kulish P 1990Phys. Rev. Lett.65 980
[6] Bonatsos D, Argyres E N and Raychev P P 1991J. Phys. A: Math. Gen.24 L403
[7] Menezes D P, Avancini S S and Providencia C 1992J. Phys. A: Math. Gen.25 6317
[8] Bonatsos D, Brito L and Menezes D P 1993J. Phys. A: Math. Gen.26 895
[9] Zhang S L 1995Phys. Lett.202A 18

[10] Avacini S S and Menezes D P 1993J. Phys. A: Math. Gen.26 6261
[11] Avancini S S and Brunelli J C 1993Phys. Lett.174A 358
[12] Li J M and Sun C P 1993Phys. Lett.180A 50
[13] Bonatsos Det al 1994Phys. Lett.192A 192
[14] Bonatsos D, Daskaloyannis C and Faessler A 1994J. Phys. A: Math. Gen.271299.
[15] Avancini S Set al 1994J. Phys. A: Math. Gen.27 831
[16] Lipkin H J, Meshkov N and Glick A J 1965Nucl. Phys.62 188
[17] Ring P and Schuck P 1980The Nuclear Many-Body Problem(New York: Springer) p 197


